- Accueil
- Les personnels du laboratoire
- Mareau Charles
MAREAU Charles
Courriel
charles.mareau@ensam.eu
Maître de conférences
Maître de Conférences
DIPPE - Durabilité, Ingénierie des Procédés et Physique des Ecoulements
Formation
Doctorat en Mécanique et Matériaux, Ecole Nationale d'Arts et Métiers - LEM3 (Metz, 2007)
- Modélisation micromécanique de l’échauffement et de la microplasticité des aciers sous sollicitations cycliques
D.E.A. Mécanique Matériaux Structures et Procédés, Université de Metz - LEM3 (Metz, 2004)
- Modélisation de l’endommagement par décohésion aux interfaces matrice-particule
Diplôme d’Ingénieur, Ecole Nationale d’Ingénieurs de Metz (Metz, 2004)
- Spécialité Recherche et Développement
Expérience professionnelle
Maître de conférences, Ecole Nationale Supérieure d’Arts et Métiers - LAMPA (Angers, Depuis 2011)
Attaché Temporaire d'Enseignement et de Recherche (A.T.E.R.), Ecole Nationale Supérieure d’Arts et Métiers - LAMPA (Angers, 2010-2011)
Chercheur Postdoctoral, Queen’s University, (Kingston, Canada, 2008-2010)
Size effects in metallic polycrystals in the context of strain-integral crystal plasticity.
Journal of the Mechanics and Physics of Solids
2025
;
203
:
106236.
The dependence of X-ray elastic constants with respect to the penetration depth.
Journal of Applied Crystallography
2023
;
56
(5)
:
1446-1455.
Influence of the microstructure of a Ti5553 titanium alloy on chip morphology and cutting forces during orthogonal cutting.
Journal of Materials Processing Technology
2023
;
319
:
118054.
Constitutive equations for thermo-elasto-plastic metallic materials undergoing large temperature variations.
Mechanics of Materials
2023
;
181
:
104637.
Experimental characterization and numerical modeling of the influence of a proof load on the fatigue resistance of welded structures.
International Journal of Fatigue
2023
;
172
:
107604.
Thermodynamic framework for variance-based non-local constitutive models.
Continuum Mechanics and Thermodynamics
2022
;
34
(5)
:
1173-1195.
Phase transformation of the Ti-5553 titanium alloy subjected to rapid heating.
Journal of Materials Science
2022
;
57
(9)
:
5620-5633.
A non-local model for the description of twinning in polycrystalline materials in the context of infinitesimal strains: application to a magnesium alloy.
Journal of Theoretical, Computational and Applied Mechanics
2022
;
7562.
A crystal plasticity-based constitutive model for near-β titanium alloys under extreme loading conditions: Application to the Ti17 alloy.
Mechanics of Materials
2022
;
166
:
104198.
X-Light : an open-source software written in Python to determine the residual stress by X-ray diffraction.
Journal of Applied Crystallography
2021
;
54
(4)
:
1244-1251.
Formation and annihilation of stressed deformation twins in magnesium.
Communications Materials
2021
;
2
(1)
:
9-1-9-11.
Heat treatment simulation of Ti-6Al-4V parts produced by selective laser melting.
Additive Manufacturing
2020
;
39
:
101766.
A phase‐field model for brittle fracture of anisotropic materials.
International Journal for Numerical Methods in Engineering
2020
;
121
(15)
:
3362-3381.
A thermodynamically consistent formulation of the Johnson–Cook model.
Mechanics of Materials
2020
;
143
:
103340.
Experimental and numerical investigation of the mechanical behavior of the AA5383 alloy at high temperatures.
Journal of Materials Processing Technology
2020
;
281
:
116609.
A non-local damage model for the fatigue behaviour of metallic polycrystals.
Philosophical Magazine
2020
;
100
(8)
:
955-981.
On the nucleation of deformation twins at the early stages of plasticity.
Acta Materialia
2020
;
196
:
733-746.
High Cycle Fatigue strength evaluation of welded joints in handling equipment.
Procedia Structural Integrity
2019
;
19
:
566 - 574.
Impact of the initial microstructure and the loading conditions on the deformation behavior of the Ti17 titanium alloy.
Journal of Materials Science
2019
;
(55)
:
1765-1778.
A continuum damage mechanics-based approach for the high cycle fatigue behavior of metallic polycrystals.
International Journal of Damage Mechanics
2018
;
838-856.
On the formation of adiabatic shear bands in titanium alloy Ti17 under severe loading conditions.
2018
;
1960
(070004)
:
0-0.
Experimental study of the impact of geometrical defects on the high cycle fatigue behavior of polycrystalline aluminium with different grain sizes.
International Journal of Fatigue
2018
;
17-25.
High cycle fatigue strength assessment methodology considering punching effects.
Procedia Engineering
2018
;
213
:
691-698.
Different composite voxel methods for the numerical homogenization of heterogeneous inelastic materials with FFT-based techniques.
Mechanics of Materials
2017
;
105
:
157-165.
Surface versus internal fatigue crack initiation in steel: Influence of mean stress.
International Journal of Fatigue
2016
;
82
(part 3)
:
437-448.
Experimental study of the impact of punching operations on the high cycle fatigue strength of Fe-Si thin sheets.
International Journal of Fatigue
2016
;
82, Part 3
:
721–729.
A crystal plasticity based approach for the modelling of high cycle fatigue damage in metallic materials.
International Journal of Damage Mechanics
2016
;
25
(5)
:
611-628.
Micromechanical modelling of twinning in polycrystalline materials: Application to magnesium.
International Journal of Plasticity
2016
;
85
:
156-171.
Study of the contribution of different effects induced by the punching process on the high cycle fatigue strength of the M330-35A electrical steel.
Procedia Structural Integrity
2016
;
2
:
3256-3263.
High Cycle Fatigue Strength of Punched Thin Fe-Si Steel Sheets.
Materials Performance and Characterization
2016
;
5
(3)
:
1-15.
Characterization and simulation of the effect of punching on the high cycle fatigue strength of thin electric steel sheets.
Procedia Engineering
2015
;
133
:
556-561.
A comparison between different numerical methods for the modeling of polycrystalline materials with an elastic-viscoplastic behavior.
Computational Materials Science
2015
;
103
:
134-144.
La méthode autocohérente.
2014
.
Experimental and numerical study of the evolution of stored and dissipated energies in a medium carbon steel under cyclic loading.
Mechanics of Materials
2013
;
60
:
93-106.
Micromechanical modeling if the interactions between the microstructure and the dissipative deformation mechanisms in steels under cyclic loading.
International Journal of Plasticity
2012
;
32-33
:
106-120.
Comparison of experimentally determined texture development in Zircaloy-2 with predictions from a rate-dependent polycrystalline model.
Materials Science and Engineering: A
2011
;
528
(29-30)
:
8676-8686.
Microstructure and self-heating for ferritic steels under cyclic loading at low stress magnitudes.
Metallurgical Research & Technology
2010
;
107
(1)
:
3-8.
Micromechanical modeling coupling time-independent and time-dependent behaviors for heterogeneous materials.
International Journal of Solids and Structures
2009
;
46
(2)
:
pp 223-237.
Influence of the free surface and the mean stress on the heat dissipation in steels under cyclic loading.
International Journal of Fatigue
2009
;
1-37.